ThmDex – An index of mathematical definitions, results, and conjectures.
Result R5379 on D3657: Real Wiener process
Distribution of the real Wiener process at a given point is gaussian
Formulation 0
Let $W \in \text{Wiener}(\mu, \sigma)$ be a D3657: Real Wiener process.
Let $t \in [0, \infty)$ be an D4767: Unsigned real number.
Then \begin{equation} W_t \overset{d}{=} \text{Gaussian}(\mu t, \sigma \sqrt{t}) \end{equation}
▶▶▶
Comment 0
Note: the second parameter $\sigma \sqrt{t}$ in the notation $\text{Gaussian}(0, \sigma \sqrt{t})$ is the standard deviation so that $\text{Var} W_t = \sigma^2 t$.
Proofs
Proof 0
Let $W \in \text{Wiener}(\mu, \sigma)$ be a D3657: Real Wiener process.
Let $t \in [0, \infty)$ be an D4767: Unsigned real number.
Let $B \in \text{Wiener}(0, 1)$ be a standard Wiener process. By definition \begin{equation} W_t \overset{d}{=} \mu t + \sigma B_t \end{equation} Result R5378: Distribution of the standard real Wiener process at a given point is gaussian shows that \begin{equation} B_t \overset{d}{=} \text{Gaussian}(0, \sqrt{t}) \end{equation} The claim follows. $\square$