Let $B : [0, \infty) \to \text{Random}(\mathbb{R})$ be a D3658: Standard real Wiener process.
A D5076: Random real process $W : [0, \infty) \to \text{Random}(\mathbb{R})$ is a real Wiener process with parameters $\mu \in \mathbb{R}$ and $\sigma \in (0, \infty)$ if and only if
\begin{equation}
\forall \, t \in [0, \infty) :
W_t
\overset{d}{=} \mu t + \sigma B_t
\end{equation}