Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
Topological space
Formulation 0
An
D548: Ordered pair
$T = (X, \mathcal{T})$ is a
topological space
if and only if
(1)
$X$ is a
D11: Set
(2)
$\mathcal{T}$ is a
D86: Topology
on $X$
Child definitions
»
D52: Closed map
»
D1945: Closure point
»
D55: Continuous map
»
D1110: Discrete topological space
»
D249: F-sigma set
»
D248: G-delta set
»
D465: Hausdorff topological space
»
D457: Isolated point
»
D785: Kolmogorov topological space
»
D93: Neighbourhood
»
D57: Open map
»
D97: Open set
»
D519: Set interior