Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Topological space
Isolated point
Formulation 0
Let $T = (X, \mathcal{T})$ be a
D1106: Topological space
.
A
D2218: Set element
$x \in X$ is an
isolated point
of $E \subseteq X$ in $T$ if and only if \begin{equation} \exists \, U \in \mathcal{T} : U \cap E = \{ x \} \end{equation}
Child definitions
»
D3876: Set of isolated points