Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Topological space
Isolated point
Formulation 0
Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
A D2218: Set element $x \in X$ is an isolated point of $E \subseteq X$ in $T$ if and only if \begin{equation} \exists \, U \in \mathcal{T} : U \cap E = \{ x \} \end{equation}
Child definitions
» D3876: Set of isolated points