ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Topological space
Definition D52
Closed map
Formulation 0
Let $T_X = (X, \mathcal{T}_X)$ and $T_Y = (Y, \mathcal{T}_Y)$ each be a D1106: Topological space.
A D18: Map $f : X \to Y$ is closed with respect to $T_X$ and $T_Y$ if and only if \begin{equation} \forall \, E \in \mathcal{T}^{\mathsf{op}}_X : f(E) \in \mathcal{T}^{\mathsf{op}}_Y \end{equation}
Formulation 1
Let $T_X = (X, \mathcal{T}_X)$ and $T_Y = (Y, \mathcal{T}_Y)$ each be a D1106: Topological space.
A D18: Map $f : X \to Y$ is closed with respect to $T_X$ and $T_Y$ if and only if \begin{equation} \forall \, E \in \mathcal{P}(X) \, (X \setminus E \in \mathcal{T}_X \quad \implies \quad Y \setminus f(E) \in \mathcal{T}_Y) \end{equation}