ThmDex – An index of mathematical definitions, results, and conjectures.
Eigenvalue sequence exists for every complex square matrix
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
Let $I_N \in \mathbb{C}^{N \times N}$ be a D5699: Complex identity matrix.
Then \begin{equation} \exists \, \lambda_1, \, \ldots, \, \lambda_N \in \mathbb{C} : \forall \, z \in \mathbb{C} : \text{Det}(z I_N - A) = \prod^N_{n = 1} (z - \lambda_n) \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
Let $I_N \in \mathbb{C}^{N \times N}$ be a D5699: Complex identity matrix.
The function $z \mapsto \text{Det}(A - z I_N)$ is a complex polynomial of degree $N$, so this result is a particular case of R4112: Strong fundamental theorem of complex algebra. $\square$