Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
Let $z \in \mathbb{C}$ be a D1207: Complex number.
(i) | $A$ is a D5947: Triangular complex matrix |
Then
\begin{equation}
\text{Det}(z I_N - A)
= \prod_{n = 1}^N (z - A_{n, n})
\end{equation}