ThmDex – An index of mathematical definitions, results, and conjectures.
Characteristic polynomial for a triangular complex matrix
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $A$ is a D5947: Triangular complex matrix
Let $z \in \mathbb{C}$ be a D1207: Complex number.
Then \begin{equation} \text{Det}(z I_N - A) = \prod_{n = 1}^N (z - A_{n, n}) \end{equation}
Subresults
R5562: Characteristic polynomial for a lower triangular complex matrix
R5561: Characteristic polynomial for an upper triangular complex matrix
R5563: Eigenvalue sequence for a triangular complex matrix
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $A$ is a D5947: Triangular complex matrix
Let $z \in \mathbb{C}$ be a D1207: Complex number.
The matrix $z I_N - A$ is a triangular matrix with diagonal \begin{equation} z - A_{1, 1}, \quad z - A_{2, 2}, \quad \ldots, \quad z - A_{N, N} \end{equation} Hence, this result is a special case of R5072: Determinant of a triangular complex matrix. $\square$