Let A∈CN×N be a D6159: Complex square matrix such that
Let z∈C be a D1207: Complex number.
(i) | A is a D5949: Lower triangular complex matrix |
(ii) | A=[A1,10⋯0A2,1A2,2⋮0⋮⋯⋱⋮AN,1AN,2⋯AN,N] |
Then
Det(zIN−A)=N∏n=1(z−An,n)