Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) | $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{C}$ are each a D1207: Complex number |
(ii) | \begin{equation} A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \vdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \lambda_N \end{bmatrix} \end{equation} |
Then $\lambda_1, \, \lambda_2, \, \ldots, \, \lambda_N$ is a D6192: Complex matrix eigenvalue sequence for $A$.