Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) | \begin{equation} A^T = A \end{equation} |
(ii) | $\lambda, \mu \in \mathbb{C}$ are each a D1207: Complex number |
(iii) | \begin{equation} \lambda \neq \mu \end{equation} |
(iv) | $z, w \in \mathbb{C}^{N \times 1} \setminus \{ \boldsymbol{0} \}$ are each a D6214: Complex matrix standard eigenvector sequence |
(v) | \begin{equation} A z = \lambda z \end{equation} |
(vi) | \begin{equation} A w = \mu w \end{equation} |
Then
\begin{equation}
z^T w
= 0
\end{equation}