ThmDex – An index of mathematical definitions, results, and conjectures.
Eigenvectors for a symmetric real matrix are orthogonal
Formulation 0
Let $A \in \mathbb{R}^{N \times N}$ be a D4571: Real matrix such that
(i) \begin{equation} A^T = A \end{equation}
(ii) $\lambda, \mu \in \mathbb{C}$ are each a D1207: Complex number
(iii) \begin{equation} \lambda \neq \mu \end{equation}
(iv) $x, y \in \mathbb{R}^{N \times 1} \setminus \{ \boldsymbol{0} \}$ are each a D5200: Real column matrix
(v) \begin{equation} A x = \lambda x \end{equation}
(vi) \begin{equation} A y = \mu y \end{equation}
Then \begin{equation} x^T y = 0 \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{R}^{N \times N}$ be a D4571: Real matrix such that
(i) \begin{equation} A^T = A \end{equation}
(ii) $\lambda, \mu \in \mathbb{C}$ are each a D1207: Complex number
(iii) \begin{equation} \lambda \neq \mu \end{equation}
(iv) $x, y \in \mathbb{R}^{N \times 1} \setminus \{ \boldsymbol{0} \}$ are each a D5200: Real column matrix
(v) \begin{equation} A x = \lambda x \end{equation}
(vi) \begin{equation} A y = \mu y \end{equation}
This result is a particular case of R5576: Eigenvectors for a symmetric complex matrix are orthogonal. $\square$