Let $A \in \mathbb{C}^{3 \times 3}$ be a D6159: Complex square matrix such that
(i) | \begin{equation} A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \end{equation} |
(ii) | \begin{equation} \Lambda = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \gamma \end{bmatrix} \end{equation} |
Then
\begin{equation}
\Lambda A
=
\begin{bmatrix}
\lambda a & \lambda b & \lambda c \\
\mu d & \mu e & \mu f \\
\gamma g & \gamma h & \gamma i
\end{bmatrix}
\end{equation}