Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Toeplitz matrix
▾
Diagonal matrix
Diagonal complex matrix
Formulation 1
A
D6159: Complex square matrix
$A \in \mathbb{C}^{N \times N}$ is a
diagonal complex matrix
if and only if \begin{equation} \forall \, n, m \in \{ 1, \ldots, N \} \left( n \neq m \quad \implies \quad A_{n, m} = 0 \right) \end{equation}
Results
»
R4991: Complex matrix multiplied from the right by a diagonal matrix
»
R4992: Complex matrix multiplied from the left by a diagonal matrix
»
R5621:
»
R5622:
»
R5620:
»
R5619: