Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Toeplitz matrix
Diagonal matrix
Formulation 0
Let $R$ be a
D24: Ring
such that
(i)
$0_R$ is an
D270: Additive identity
in $R$
A
D102: Matrix
$r : I \times J \to R$ is a
diagonal matrix
over $R$ if and only if \begin{equation} \forall \, i \in I : \forall \, j \in J \left( i \neq j \quad \implies \quad r_{i, j} = 0_R \right) \end{equation}
Child definitions
»
D5858: Diagonal complex matrix
»
D761: Identity matrix