ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Countable map
Array
Matrix
Toeplitz matrix
Diagonal matrix
Definition D761
Identity matrix
Formulation 0
Let $R$ be an D266: Identity ring such that
(i) $0_R$ is an D270: Additive identity in $R$
(ii) $1_R$ is a D577: Multiplicative identity in $R$
A D102: Matrix $r : I \times J \to R$ is an identity matrix over $R$ if and only if
(1) \begin{equation} \forall \, i \in I : \forall \, j \in J \left( i \neq j \quad \implies \quad r_{i, j} = 0_R \right) \end{equation}
(2) \begin{equation} \forall \, i \in I : \forall \, j \in J \left( i = j \quad \implies \quad r_{i, j} = 1_R \right) \end{equation}
Formulation 1
Let $R$ be an D266: Identity ring such that
(i) $0_R$ is an D270: Additive identity in $R$
(ii) $1_R$ is a D577: Multiplicative identity in $R$
A D2054: Diagonal matrix $r : I \times J \to R$ over $R$ is an identity matrix over $R$ if and only if \begin{equation} \forall \, i \in I : \forall \, j \in J \left( i = j \quad \implies \quad r_{i, j} = 1_R \right) \end{equation}