Let $M = (X, \mathcal{F}, \mathbb{\mu})$ be a
D1158: Measure space such that
(i) |
$E_0, E_1, E_2, \ldots \in \mathcal{F}$ are each a D1109: Measurable set in $M$
|
(ii) |
\begin{equation}
E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots
\end{equation}
|
Result
R984: Transforming an isotone sequence of sets into pairwise disjoint sequence with common limit shows that we can write
\begin{equation}
\bigcup_{n \in \mathbb{N}} E_n = E_0 \cup \left( \bigcup_{n \in \mathbb{N} + 1} E_{n + 1} \setminus E_n \right)
\end{equation}
where $E_0, E_2 \setminus E_1, E_3 \setminus E_2, \ldots$ is now a disjoint sequence. Applying disjoint additivity of measure
\begin{equation}
\begin{split}
\mu \left( \bigcup_{n \in \mathbb{N}} E_n \right)
& = \mu \left[ E_0 \cup \left( \bigcup_{n \in \mathbb{N} + 1} E_{n + 1} \setminus E_n \right) \right] \\
& = \mu(E_0) + \mu \left( \bigcup_{n \in \mathbb{N} + 1} E_{n + 1} \setminus E_n \right) \\
& = \mu(E_0) + \sum_{n \in \mathbb{N} + 1} \mu(E_{n + 1} \setminus E_n) \\
\end{split}
\end{equation}
Since $E_0, E_1, E_2, \ldots$ is an isotone sequence, then each finite union equals the set in the union with the largest index. That is, $E_0 \cup [\bigcup_{n = 1}^{N - 1} E_{n + 1} \setminus E_n] = E_N$, for each positive integer $N$. Thus
\begin{equation}
\begin{split}
\mu \left( \bigcup_{n \in \mathbb{N}} E_n \right)
& = \mu(E_0) + \sum_{n \in \mathbb{N} + 1} \mu(E_{n + 1} \setminus E_n) \\
& = \mu(E_0) + \lim_{N \to \infty} \sum_{n = 1}^{N - 1} \mu(E_{n + 1} \setminus E_n) \\
& = \lim_{N \to \infty} \left( \mu(E_0) + \sum_{n = 1}^{N - 1} \mu(E_{n + 1} \setminus E_n) \right) \\
& = \lim_{N \to \infty} \mu \left[ E_0 \cup \left( \bigcup_{n = 1}^{N - 1} E_{n + 1} \setminus E_n \right) \right] \\
& = \lim_{N \to \infty} \mu(E_N)
\end{split}
\end{equation}
This finishes the proof. $\square$