ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Topology
Definition D154
Pushforward topology

Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward topology on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $T = \{ T_j \}_{j \in J}$ is the D11: Set $$\bigcap_{j \in J} \{ E \subseteq Y \mid f^{-1}_j(E) \in \mathcal{T}_j \}$$

Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward topology on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $T = \{ T_j \}_{j \in J}$ is the D11: Set $$\{ E \subseteq Y \mid \forall \, j \in J : f^{-1}_j(E) \in \mathcal{T}_j \}$$

Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$ such that
 (i) $f_j : X_j \to Y$ is a D18: Map for each $j \in J$
The pushforward topology on $Y$ with respect to $\{ f_j \}_{j \in J}$ and $\{ T_j \}_{j \in J}$ is the D11: Set $$\bigcap_{j \in J} \left\{ E \subseteq Y : f^{-1}_j(E) \in \mathcal{T}_j \right\}$$