ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Topology
Definition D154
Pushforward topology
Formulation 0
Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward topology on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $T = \{ T_j \}_{j \in J}$ is the D11: Set \begin{equation} \bigcap_{j \in J} \{ E \subseteq Y \mid f^{-1}_j(E) \in \mathcal{T}_j \} \end{equation}
Formulation 1
Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$.
Let $f_j : X_j \to Y$ be a D18: Map for each $j \in J$.
The pushforward topology on $Y$ with respect to $f = \{ f_j \}_{j \in J}$ and $T = \{ T_j \}_{j \in J}$ is the D11: Set \begin{equation} \{ E \subseteq Y \mid \forall \, j \in J : f^{-1}_j(E) \in \mathcal{T}_j \} \end{equation}
Formulation 2
Let $T_j = (X_j, \mathcal{T}_j)$ be a D1106: Topological space for each $j \in J$ such that
(i) $f_j : X_j \to Y$ is a D18: Map for each $j \in J$
The pushforward topology on $Y$ with respect to $\{ f_j \}_{j \in J}$ and $\{ T_j \}_{j \in J}$ is the D11: Set \begin{equation} \bigcap_{j \in J} \left\{ E \subseteq Y : f^{-1}_j(E) \in \mathcal{T}_j \right\} \end{equation}