Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Operation
▾
N-operation
▾
Binary operation
▾
Enclosed binary operation
▾
Groupoid
▾
Ringoid
▾
Semiring
▾
Ring
▾
Factor
▾
Divisor
▾
Two-sided divisor
▾
Prime element
▾
Set of prime elements
▾
Prime factorisation
▾
Prime integer factorisation
▾
Prime integer power factorisation
Prime factor counting function
Formulation 0
The
prime factor counting function
is the
D5406: Positive integer function
\begin{equation} \{ 2, 3, 4, \ldots \} \to \{ 1, 2, 3, \ldots \}, \quad \prod_{n = 1}^N p_n^{a_n} \mapsto \sum_{n = 1}^N a_n \end{equation}
Child definitions
»
D1579: Distinct prime factor counting function