Let $X_j$ be a D11: Set for each $j \in J$.
Then $X = \{ X_j \}_{j \in J}$ is a disjoint set collection if and only if
\begin{equation}
\forall \, N \in 2, 3, 4, \ldots :
\forall \, j_1, \ldots, j_N \in J
\left( \forall \, n, m \in 1, \ldots, N \left( n \neq m \quad \implies \quad j_n \neq j_m \right) \quad \implies \quad \bigcap_{n = 1}^N X_{j_n} = \emptyset \right)
\end{equation}