**discrete measurable space**if and only if

(1) | $X$ is a D11: Set |

(2) | $\mathcal{F} = \mathcal{P}(X)$ (D195: Discrete sigma-algebra) |

*$X$ forms a discrete measurable space*.

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Boolean algebra

▾ Sigma-algebra

▾ Discrete sigma-algebra

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Subset

▾ Power set

▾ Hyperpower set sequence

▾ Hyperpower set

▾ Hypersubset

▾ Subset algebra

▾ Boolean algebra

▾ Sigma-algebra

▾ Discrete sigma-algebra

Formulation 0

An D548: Ordered pair $M = (X, \mathcal{F})$ is a **discrete measurable space** if and only if

We then say that *$X$ forms a discrete measurable space*.

(1) | $X$ is a D11: Set |

(2) | $\mathcal{F} = \mathcal{P}(X)$ (D195: Discrete sigma-algebra) |

Child definitions