Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Boolean algebra
▾
Sigma-algebra
Discrete sigma-algebra
Formulation 0
Let $X$ be a
D11: Set
.
Let $\mathcal{P}(X)$ be the
D80: Power set
of $X$.
A
D11: Set
$\mathcal{F} \subseteq \mathcal{P}(X)$ is the
discrete sigma-algebra
on $X$ if and only if \begin{equation} \mathcal{F} = \mathcal{P}(X) \end{equation}
Child definitions
»
D1700: Discrete measurable space