ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Set partition
Proper set partition
Proper N-partition
Set of proper N-partitions
Definition D2913
Bell coefficient
Formulation 2
Let $n, m \in \mathbb{N}$ each be a D996: Natural number.
The Bell coefficient with respect to $(n, m)$ is the D996: Natural number \begin{equation} {n \brace m} : = \left\{ P : P \text{ properly partitions } \{ 1, \ldots, n \} \text{ and } |P| = m \right\} \end{equation}
Formulation 3
Let $n, m \in \mathbb{N}$ each be a D996: Natural number such that
(i) $\text{Part} (n)$ is the D2910: Set of proper set partitions for $\{ 1, \ldots, n \}$
The Bell coefficient with respect to $(n, m)$ is the D996: Natural number \begin{equation} {n \brace m} : = \left\{ P \in \text{Part} (n) : |P| = m \right\} \end{equation}