Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
P-integrable basic function
▾
Set of P-integrable complex Borel functions
Set of P-integrable random complex numbers
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a
D1159: Probability space
such that
(i)
$\mathcal{M} = \mathcal{M}(\Omega \to \mathbb{C})$ is the
D5584: Set of random complex numbers
on $M$
The
set of P-integrable random complex numbers
on $P$ with respect to $p \in [1, \infty)$ is the
D11: Set
\begin{equation} \mathfrak{L}^p(P \to \mathbb{C}) : = \left\{ Z \in \mathcal{M} : \mathbb{E} |Z|^p < \infty \right\} \end{equation}
Child definitions
»
D5585: Set of P-integrable random basic real numbers