Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
P-integrable basic function
▾
Set of P-integrable complex Borel functions
▾
Set of P-integrable random complex numbers
Set of P-integrable random basic real numbers
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a
D1159: Probability space
such that
(i)
$\mathcal{M} = \mathcal{M}(\Omega \to \mathbb{R})$ is the
D5586: Set of random basic real numbers
on $M$
The
set of P-integrable random basic real numbers
on $P$ with respect to $p \in [1, \infty)$ is the
D11: Set
\begin{equation} \mathfrak{L}^p(P \to \mathbb{R}) : = \left\{ X \in \mathcal{M} : \mathbb{E} |X|^p < \infty \right\} \end{equation}