Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
P-integrable basic function
▾
Set of P-integrable complex Borel functions
Lebesgue length function
Formulation 0
Let $M = (X, \mathcal{F}, \mu)$ be a
D1158: Measure space
such that
(i)
$\mathfrak{L}^p = \mathfrak{L}^p (M \to \mathbb{C})$ is a
D316: Set of P-integrable complex Borel functions
on $M$
The
Lebesgue length function
on $\mathfrak{L}^p$ is the
D4367: Unsigned real function
\begin{equation} \mathfrak{L}^p \to [0, \infty), \quad f \mapsto \left( \int_X |f|^p \, d \mu \right)^{1 / p} \end{equation}
Also known as
Lebesgue seminorm
Child definitions
»
D117: Complex Lebesgue quotient set
»
D5594: Lebesgue distance function