ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Boolean algebra ▼ Sigma-algebra ▼ Set of sigma-algebras ▼ Generated sigma-algebra
Definition D319
Borel sigma-algebra

Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
Let $\mathsf{SA} : = \mathsf{SA}(X)$ be the D484: Set of sigma-algebras on $X$.
The Borel sigma-algebra on $X$ with respect to $T$ is the D11: Set $$\sigma \langle \mathcal{T} \rangle : = \bigcap \{ \mathcal{F} : \mathcal{T} \subseteq \mathcal{F} \in \mathsf{SA} \}$$

Let $T = (X, \mathcal{T})$ be a D1106: Topological space.
The Borel sigma-algebra on $X$ with respect to $T$ is the D11: Set $$\sigma \langle \mathcal{T} \rangle : = \bigcap \{ \mathcal{F} :\mathcal{T} \subseteq \mathcal{F} \text{ and } \mathcal{F} \text{ is a sigma-algebra on } X \}$$
Children
 ▶ Borel measurable space