Let $\mathbb{Q}$ be the D368: Set of rational numbers.

The

**set of irrational numbers**is the D11: Set \begin{equation} \mathbb{I} : = \mathbb{R} \setminus \mathbb{Q} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Preordering relation

▾ Partial ordering relation

▾ Ordering relation

▾ Ordered set

▾ Dedekind cut

▾ Set of real numbers

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Preordering relation

▾ Partial ordering relation

▾ Ordering relation

▾ Ordered set

▾ Dedekind cut

▾ Set of real numbers

Formulation 0

Let $\mathbb{R}$ be the D282: Set of real numbers.

Let $\mathbb{Q}$ be the D368: Set of rational numbers.

The**set of irrational numbers** is the D11: Set
\begin{equation}
\mathbb{I} : = \mathbb{R} \setminus \mathbb{Q}
\end{equation}

Let $\mathbb{Q}$ be the D368: Set of rational numbers.

The