Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Binary endorelation
▾
Preordering relation
▾
Partial ordering relation
▾
Ordering relation
▾
Ordered set
▾
Dedekind cut
▾
Set of real numbers
Set of irrational numbers
Formulation 0
Let $\mathbb{R}$ be the
D282: Set of real numbers
.
Let $\mathbb{Q}$ be the
D368: Set of rational numbers
.
The
set of irrational numbers
is the
D11: Set
\begin{equation} \mathbb{I} : = \mathbb{R} \setminus \mathbb{Q} \end{equation}