ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Partially ordered set
Closed interval
Cantor sequence
Definition D3730
Standard cantor sequence
Formulation 0
Let $[0, 1]$ be the D1510: Closed real unit interval such that
(i) $\mathcal{P} [0, 1]$ is the D80: Power set of $[0, 1]$
A D3639: Standard sequence $C : \mathbb{N} \to \mathcal{P}[0, 1]$ is a standard cantor sequence if and only if
(1) \begin{equation} C_0 = [0, 1] \end{equation}
(2) \begin{equation} \forall \, n \in 1, 2, 3, \ldots : C_n = \frac{1}{3} C_{n - 1} \cup \left( \frac{1}{3} C_{n - 1} + \frac{2}{3} \right) \end{equation}