Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Ordering relation
Ordered set
Dedekind cut
Set of real numbers
Real number
Cantor number
Standard Cantor number
Formulation 1
A D993: Real number $x \in \mathbb{R}$ is a standard Cantor number if and only if \begin{equation} \exists \, a_1, a_2, a_3, \ldots \in \{ 0, 2 \} : x = \sum_{n \in \{ 1, 2, 3, \ldots \}} \frac{a_n}{3^n} \end{equation}
Child definitions
» D3731: Standard Cantor set