Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Binary endorelation
▾
Preordering relation
▾
Partial ordering relation
▾
Ordering relation
▾
Ordered set
▾
Dedekind cut
▾
Set of real numbers
▾
Real number
▾
Cantor number
Standard Cantor number
Formulation 1
A
D993: Real number
$x \in \mathbb{R}$ is a
standard Cantor number
if and only if \begin{equation} \exists \, a_1, a_2, a_3, \ldots \in \{ 0, 2 \} : x = \sum_{n \in \{ 1, 2, 3, \ldots \}} \frac{a_n}{3^n} \end{equation}
Child definitions
»
D3731: Standard Cantor set