ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Definition D429
Monotone map
Formulation 0
Let $P_X = (X, {\preceq_X})$ and $P_Y = (Y, {\preceq_Y})$ each be a D1103: Partially ordered set.
A D18: Map $f : X \to Y$ is monotone from $P_X$ to $P_Y$ if and only if at least one of the following statements is true
(1) $\forall \, x, y \in X \, ((x, y) \in {\preceq_X} \quad \Rightarrow \quad (f(x), f(y)) \in {\preceq_Y})$ (D427: Isotone map)
(2) $\forall \, x, y \in X \, ((x, y) \in {\preceq_X} \quad \Rightarrow \quad (f(y), f(x)) \in {\preceq_Y})$ (D428: Antitone map)
Formulation 1
Let $P_X = (X, {\preceq_X})$ and $P_Y = (Y, {\preceq_Y})$ each be a D1103: Partially ordered set.
A D18: Map $f : X \to Y$ is monotone from $P_X$ to $P_Y$ if and only if at least one of the following statements is true
(1) $\forall \, x, y \in X \, (x \preceq_X y \quad \Rightarrow \quad f(x) \preceq_Y f(y))$ (D427: Isotone map)
(2) $\forall \, x, y \in X \, (x \preceq_X y \quad \Rightarrow \quad f(y) \preceq_Y f(x))$ (D428: Antitone map)
Children
D432: Strictly monotone map