A D18: Map $f : X \to Y$ is monotone from $P_X$ to $P_Y$ if and only if at least one of the following statements is true
(1) | $\forall \, x, y \in X \, ((x, y) \in {\preceq_X} \quad \Rightarrow \quad (f(x), f(y)) \in {\preceq_Y})$ (D427: Isotone map) |
(2) | $\forall \, x, y \in X \, ((x, y) \in {\preceq_X} \quad \Rightarrow \quad (f(y), f(x)) \in {\preceq_Y})$ (D428: Antitone map) |