ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Monotone map
Definition D432
Strictly monotone map
Formulation 0
Let $P_X = (X, {\prec_X})$ and $P_Y = (Y, {\prec_Y})$ each be a D1776: Strict partially ordered set.
A D18: Map $f : X \to Y$ is strictly monotone with respect to $P_X$ and $P_Y$ if and only if one of the following statements is true
(1) $\forall \, x, y \in X \, ((x, y) \in {\prec_X} \quad \Rightarrow \quad (f(x), f(y)) \in {\prec_Y})$ (D430: Strictly isotone map)
(2) $\forall \, x, y \in X \, ((x, y) \in {\prec_X} \quad \Rightarrow \quad (f(y), f(x)) \in {\prec_Y})$ (D431: Strictly antitone map)
Formulation 1
Let $P_X = (X, {\prec_X})$ and $P_Y = (Y, {\prec_Y})$ each be a D1776: Strict partially ordered set.
A D18: Map $f : X \to Y$ is strictly monotone with respect to $P_X$ and $P_Y$ if and only if one of the following statements is true
(1) $\forall \, x, y \in X \, (x \prec_X y \quad \Rightarrow \quad f(x) \prec_Y f(y))$ (D430: Strictly isotone map)
(2) $\forall \, x, y \in X \, (x \prec_X y \quad \Rightarrow \quad f(y) \prec_Y f(x))$ (D431: Strictly antitone map)