Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Measurable space
▾
Measure space
▾
Probability space
▾
Event
Event Shannon information
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a
D1159: Probability space
such that
(i)
$E \in \mathcal{F}$ is an
D1716: Event
in $P$
Let $\log_a$ be the
D866: Standard real logarithm function
in base
$a \in (0, \infty)$ such that
(i)
\begin{equation} \log_a 0 : = - \infty \end{equation}
The
Shannon information
of $E$ in $P$
in base
$a$ is the
D5237: Unsigned basic number
\begin{equation} - \log_a \mathbb{P}(E) \in [0, \infty] \end{equation}
Child definitions
»
D4392: Event Shannon bit information
»
D4393: Event Shannon nat information