Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Sequence
▾
Number sequence
▾
Real function sequence
▾
Rational sequence
▾
Integer sequence
▾
Natural number sequence
Fibonacci natural number sequence
Formulation 0
A
D997: Natural number sequence
$F : \mathbb{N} \to \mathbb{N}$ is the
Fibonacci natural number sequence
if and only if
(1)
$F_0 = 0$
(2)
$F_1 = 1$
(3)
$\forall \, n \geq 2 : F_n = F_{n - 1} + F_{n - 2}$
Formulation 1
Let $F : \mathbb{N} \to \mathbb{N}$ be a
D997: Natural number sequence
such that
(i)
$F_0 = 0$
(ii)
$F_1 = 1$
Then $F$ is the
Fibonacci natural number sequence
if and only if \begin{equation} F_2 = F_1 + F_0, \quad F_3 = F_2 + F_1, \quad F_4 = F_3 + F_2, \quad \dots \end{equation}