Let $G_1 \in \text{Gamma}(\alpha_1, 1), \; \ldots, \; G_N \in \text{Gamma}(\alpha_N, 1)$ each be a
D3838: Gamma random positive real number such that
A
D4383: Random euclidean real number $X \in \text{Random}((0, 1)^N)$ is a
Dirichlet random euclidean real number with parameter $\alpha = (\alpha_1, \ldots, \alpha_N)$ if and only if
\begin{equation}
X
\overset{d}{=} \frac{1}{\sum_{n = 1}^N G_n} (G_1, \ldots, G_N)
\end{equation}