ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Left ring action
Module
Vector space
Vector space seminorm
Vector space norm
Normed vector space
Bounded set
Bounded map
Constant-bounded map
Constant-bounded function
Finite measure
Probability measure
Generalised gamma probability measure
Gamma probability measure
Definition D3838
Gamma random positive real number
Formulation 2
A D5722: Random positive real number $X \in \text{Random}(0, \infty)$ is a gamma random positive real number with parameters $\alpha, \beta \in (0, \infty)$ if and only if \begin{equation} \forall \, t \in \mathbb{R} : \mathbb{E} (e^{i t X}) = (1 - i t \beta^{-1})^{- \alpha} \end{equation}
Formulation 3
A D5722: Random positive real number $X \in \text{Random}(0, \infty)$ is a gamma random positive real number with parameters $\alpha, \beta \in (0, \infty)$ if and only if \begin{equation} \forall \, t \in \mathbb{R} : \mathbb{E} (e^{i t X}) = \frac{1}{\left( 1 - \frac{i t}{\beta} \right)^{\alpha}} \end{equation}
Formulation 4
A D5722: Random positive real number $X \in \text{Random}(0, \infty)$ is a gamma random positive real number with parameters $\alpha, \beta \in (0, \infty)$ if and only if \begin{equation} \forall \, t \in \mathbb{R} : \mathbb{E} (e^{i t X}) = \left( 1 - \frac{i t}{\beta} \right)^{- \alpha} \end{equation}
Formulation 5
A D5722: Random positive real number $X \in \text{Random}(0, \infty)$ is a gamma random positive real number with parameters $\alpha, \beta \in (0, \infty)$ if and only if \begin{equation} \forall \, t \in \mathbb{R} : \mathfrak{F}_X (t) = \left( 1 - \frac{i t}{\beta} \right)^{- \alpha} \end{equation}
Children
D4867: Beta random positive real number
Results
R5251: Exponential random positive real number is a gamma random positive real number
R2338: Finite sum of I.I.D. exponential random positive real numbers is a gamma random random positive real number
R5243: Finite sum of uncorrelated identically distributed exponential random positive real numbers is a gamma random random positive real number