Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Filtered probability space
Random time
Stopping time
Negative binomial random number
Geometric random positive integer
Formulation 1
Let $X_1, X_2, X_3, \dots \in \text{Bernoulli}(\theta)$ each be a D207: Bernoulli random boolean number such that
(i) $X_1, X_2, X_3, \dots$ is an D2713: Independent random collection
(ii) $\theta \in (0, 1]$
A D5748: Random positive integer $G \in \text{Random} \{ 1, 2, 3, \ldots \}$ is a geometric random positive integer with parameter $\theta$ if and only if \begin{equation} G \overset{d}{=} \min \left\{ N \in \{ 1, 2, 3, \ldots \} : \sum_{n = 1}^N X_n = 1 \right\} \end{equation}
Also known as
Geometric random variable
Child definitions
» D5116: Cogeometric random natural number
» D4000: Standard exponential random positive real number
Results
» R3205: Probability mass function for geometric random positive integer
» R2485: Expectation of geometric random basic positive integer
» R4804: Probability distribution function for geometric random positive integer
» R4805: Dual probability distribution function for geometric random positive integer
» R4997:
» R4998: Limit of distribution function of geometric random positive integer scaled by reciprocal of index
» R4996: