ThmDex – An index of mathematical definitions, results, and conjectures.
Probability distribution function for geometric random positive integer
Formulation 0
Let $N \in \text{Geometric}(\theta)$ be a D4001: Geometric random positive integer.
Let $n \in \mathbb{N}$ be a D996: Natural number.
Then \begin{equation} \mathbb{P}(N \leq n) = 1 - (1 - \theta)^n \end{equation}
Subresults
R4805: Dual probability distribution function for geometric random positive integer
Proofs
Proof 0
Let $N \in \text{Geometric}(\theta)$ be a D4001: Geometric random positive integer.
Let $n \in \mathbb{N}$ be a D996: Natural number.
Result R4805: Dual probability distribution function for geometric random positive integer shows that \begin{equation} \mathbb{P}(N > n) = (1 - \theta)^n \end{equation} Thus \begin{equation} \mathbb{P}(N \leq n) = 1 - \mathbb{P}(N > n) = 1 - (1 - \theta)^n \end{equation} $\square$