ThmDex – An index of mathematical definitions, results, and conjectures.
Dual probability distribution function for geometric random positive integer
Formulation 0
Let $N \in \text{Geometric}(\theta)$ be a D4001: Geometric random positive integer.
Let $n \in \mathbb{N}$ be a D996: Natural number.
Then \begin{equation} \mathbb{P}(N > n) = (1 - \theta)^n \end{equation}
Proofs
Proof 0
Let $N \in \text{Geometric}(\theta)$ be a D4001: Geometric random positive integer.
Let $n \in \mathbb{N}$ be a D996: Natural number.
Let $X_1, X_2, X_3, \ldots \in \text{Bernoulli}(\theta)$ be an independent collection of Bernoulli random numbers such that \begin{equation} N \overset{d}{=} \min \left\{ M \in \{ 1, 2, 3, \ldots \} : \sum_{m = 1}^M X_m = 1 \right\} \end{equation} The case $n = 0$ clearly holds since $\mathbb{P}(N > 0) = 1 = (1 - \theta)^0$. Suppose thus that $n \geq 1$. We have \begin{equation} \{ N > n \} = \left\{ \sum_{m = 1}^n X_m = 0 \right\} = \{ X_1 = 0, X_2 = 0, \ldots, X_n = 0 \} \end{equation} Thus by independence \begin{equation} \mathbb{P}(N > n) = \mathbb{P} \left( X_1 = 0, X_2 = 0, \ldots, X_n = 0 \right) = \prod_{m = 1}^n \mathbb{P}(X_m = 0) = (1 - \theta)^n \end{equation} $\square$