Let $G_n \in \text{Geometric}(\theta_n)$ be a D4001: Geometric random positive integer for each $n \in \mathbb{N}$ such that
Let $a \in (0, \infty)$ be a D5407: Positive real number.
(i) | \begin{equation} \lim_{n \to \infty} \theta_n n = 1 \end{equation} |
Then
\begin{equation}
\lim_{n \to \infty} \mathbb{P} \left( \frac{G_n}{n} \leq a \right)
= 1 - e^{-a}
\end{equation}