ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Let $G_n \in \text{Geometric}(\theta_n)$ be a D4001: Geometric random positive integer for each $n \in 1, 2, 3, \ldots$ such that
(i) \begin{equation} \forall \, n \in 1, 2, 3, \ldots : \theta_n = \frac{1}{n} \end{equation}
Let $a \in (0, \infty)$ be a D5407: Positive real number.
Then \begin{equation} \lim_{n \to \infty} \mathbb{P} \left( \frac{G_n}{n} \leq a \right) = 1 - e^{-a} \end{equation}
Proofs
Proof 0
Let $G_n \in \text{Geometric}(\theta_n)$ be a D4001: Geometric random positive integer for each $n \in 1, 2, 3, \ldots$ such that
(i) \begin{equation} \forall \, n \in 1, 2, 3, \ldots : \theta_n = \frac{1}{n} \end{equation}
Let $a \in (0, \infty)$ be a D5407: Positive real number.
This result is a particular case of R4996: . $\square$