Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Filtered probability space
Random time
Stopping time
Negative binomial random number
Geometric random positive integer
Cogeometric random natural number
Formulation 1
Let $N$ be a D4001: Geometric random positive integer with parameter $\theta$.
A D5216: Random natural number $M \in \mathsf{Random}(\mathbb{N})$ is a geometric random basic natural number if and only if \begin{equation} M \overset{d}{=} N - 1 \end{equation}
Also known as
Shifted geometric random number, Shifted geometric random variable
Results
» R4801: Probability mass function for cogeometric random basic natural number