ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Filtered probability space
Random time
Stopping time
Negative binomial random number
Geometric random positive integer
Standard exponential random positive real number
Exponential random positive real number
Definition D4862
Erlang random positive real number
Formulation 1
Let $T_1, T_2, T_3, \, \overset{d}{=} \text{Exponential}(\theta)$ each be an D214: Exponential random positive real number such that
(i) $T_1, T_2, T_3, \, \dots$ is an D2713: Independent random collection
A D5722: Random positive real number $X \in \text{Random}(0, \infty)$ is an Erlang random positive real number with parameter $\theta$ if and only if \begin{equation} X \overset{d}{=} \sum_{n = 1}^N T_n \end{equation}
Children
D5207: Real poisson process