ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Standard N-operation
Indexed sum
Series
Power series
Convergent power series
Convergent basic real power series
Standard natural real exponential function
Definition D5752
Softmax function
Formulation 0
Let $\exp$ be the D1932: Standard natural real exponential function.
The softmax function with respect to $N \in 2, 3, 4, \ldots$ is the D4363: Euclidean real function \begin{equation} \mathbb{R}^N \to (0, 1)^N, \quad x \mapsto \frac{1}{\sum_{n = 1}^N \exp(x_n)} \left( \exp (x_1), \ldots, \exp(x_N) \right) \end{equation}
Formulation 1
Let $t \mapsto e^t$ be the D1932: Standard natural real exponential function.
The softmax function with respect to $N \in 2, 3, 4, \ldots$ is the D4363: Euclidean real function \begin{equation} \mathbb{R}^N \to (0, 1)^N, \quad x \mapsto \frac{1}{\sum_{n = 1}^N e^{x_n}} \left( e^{x_1}, \ldots, e^{x_N} \right) \end{equation}