ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Countable map
Array
Matrix
Square matrix
Complex square matrix
Invertible complex matrix
Definition D5871
Invertible real matrix
Formulation 0
Let $I_N \in \mathbb{R}^{N \times N}$ be a D5621: Real identity matrix.
A D4571: Real matrix $A \in \mathbb{R}^{N \times N}$ is invertible if and only if
(1) \begin{equation} \exists \, B \in \mathbb{R}^{N \times N} : B A = I_N \end{equation}
(2) \begin{equation} \exists \, C \in \mathbb{R}^{N \times N} : A C = I_N \end{equation}
Formulation 1
Let $I_N \in \mathbb{R}^{N \times N}$ be a D5621: Real identity matrix.
A D4571: Real matrix $A \in \mathbb{R}^{N \times N}$ is invertible if and only if
(1) $A$ is a D5869: Left-invertible real matrix
(2) $A$ is a D5868: Right-invertible real matrix
Results
R5508: Real square matrix invertible iff determinant nonzero
R5471: Real square matrix invertible iff transpose is
R5500: Transpose of real matrix inverse is inverse to the transpose