The

**standard basic real inverse logistic function**is the D4364: Real function \begin{equation} (0, 1) \to \mathbb{R}, \quad x \mapsto \log \frac{x}{1 - x} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Operation

▾ N-operation

▾ Binary operation

▾ Enclosed binary operation

▾ Groupoid

▾ Semigroup

▾ Standard N-operation

▾ Indexed sum

▾ Series

▾ Power series

▾ Convergent power series

▾ Convergent basic real power series

▾ Standard natural real exponential function

▾ Basic real logistic function

▾ Standard basic real logistic function

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Operation

▾ N-operation

▾ Binary operation

▾ Enclosed binary operation

▾ Groupoid

▾ Semigroup

▾ Standard N-operation

▾ Indexed sum

▾ Series

▾ Power series

▾ Convergent power series

▾ Convergent basic real power series

▾ Standard natural real exponential function

▾ Basic real logistic function

▾ Standard basic real logistic function

Formulation 0

Let $\log$ be the D865: Standard natural real logarithm function.

The**standard basic real inverse logistic function** is the D4364: Real function
\begin{equation}
(0, 1) \to \mathbb{R}, \quad
x \mapsto \log \frac{x}{1 - x}
\end{equation}

The

Also known as

Standard basic real logit function, Standard basic real log-odds function