Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Countable map
Array
Matrix
Matrix main diagonal
Matrix trace
Complex matrix trace
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
The trace of $A$ is the D1207: Complex number \begin{equation} \text{Trace} A : = \sum_{n = 1}^N A_{n, n} \end{equation}
Child definitions
» D5946: Real matrix trace
Results
» R5533: Complex matrix trace equals sum of eigenvalues
» R5545: Trace of conjugate transpose equals conjugate of trace
» R5552: Complex matrix trace is commutation invariant for two complex matrices
» R5575: Traces of complex matrix gramians coincide