Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Matrix main diagonal
▾
Matrix trace
Complex matrix trace
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a
D6159: Complex square matrix
.
The
trace
of $A$ is the
D1207: Complex number
\begin{equation} \text{Trace} A : = \sum_{n = 1}^N A_{n, n} \end{equation}
Child definitions
»
D5946: Real matrix trace
Results
»
R5533: Complex matrix trace equals sum of eigenvalues
»
R5545: Trace of conjugate transpose equals conjugate of trace
»
R5552: Complex matrix trace is commutation invariant for two complex matrices
»
R5575: Traces of complex matrix gramians coincide