Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Countable map
Array
Matrix
Matrix column index set
Column matrix
Complex column matrix
Euclidean complex dot product
Formulation 0
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a D5689: Complex column matrix.
The dot product of $(z, w)$ is the D1207: Complex number \begin{equation} \sum_{n = 1}^N z_n \overline{w}_n \end{equation}
Formulation 1
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a D5689: Complex column matrix.
The dot product of $(z, w)$ is the D1207: Complex number \begin{equation} z^T \overline{w} \end{equation}
Child definitions
» D6241: Euclidean real dot product