Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Matrix column index set
▾
Column matrix
▾
Complex column matrix
Euclidean complex dot product
Formulation 0
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a
D5689: Complex column matrix
.
The
dot product
of $(z, w)$ is the
D1207: Complex number
\begin{equation} \sum_{n = 1}^N z_n \overline{w}_n \end{equation}
Formulation 1
Let $z, w \in \mathbb{C}^{N \times 1}$ each be a
D5689: Complex column matrix
.
The
dot product
of $(z, w)$ is the
D1207: Complex number
\begin{equation} z^T \overline{w} \end{equation}
Child definitions
»
D6241: Euclidean real dot product