Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Matrix column index set
▾
Column matrix
▾
Complex column matrix
▾
Euclidean complex dot product
Euclidean real dot product
Formulation 0
Let $x, y \in \mathbb{R}^{N \times 1}$ each be a
D5200: Real column matrix
.
The
dot product
of $(x, y)$ is the
D993: Real number
\begin{equation} \sum_{n = 1}^N x_n y_n \end{equation}