Let $P = (\Omega, \mathcal{F}, \mathbb{P}, \{ \mathcal{G}_j \}_{j \in J})$ be a
D1726: Filtered probability space such that
Then $\{ X_j \}_{j \in J}$ is an
adapted random collection on $P$ if and only if
\begin{equation}
\forall \, j \in J : \sigma_{\text{pullback}} \langle X_j \rangle \subseteq \mathcal{G}_j
\end{equation}