ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Subset ▼ Power set ▼ Hyperpower set sequence ▼ Hyperpower set ▼ Hypersubset ▼ Subset algebra ▼ Subset structure ▼ Measurable space ▼ Measurable map ▼ Random variable ▼ Class of random variables ▼ Collection of random variables ▼ Set of random variables ▼ Random collection
Definition D2156

Let $P = (\Omega, \mathcal{F}, \mathbb{P}, \{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
 (i) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ X_j \}_{j \in J}$ is an adapted random collection on $P$ if and only if $$\forall \, j \in J : X_j \in \mathcal{G}_j$$

Let $P = (\Omega, \mathcal{F}, \mathbb{P}, \{ \mathcal{G}_j \}_{j \in J})$ be a D1726: Filtered probability space such that
 (i) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ X_j \}_{j \in J}$ is an adapted random collection on $P$ if and only if $$\forall \, j \in J : \sigma_{\text{pullback}} \langle X_j \rangle \subseteq \mathcal{G}_j$$

Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
 (i) $\{ \mathcal{G}_j \}_{j \in J}$ is a D3346: Sigma-algebra filtration for $\mathcal{F}$ on $P$ (ii) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ (X_j, \mathcal{G}_j) \}_{j \in J}$ is an adapted random collection on $P$ if and only if $$\forall \, j \in J : \sigma_{\text{pullback}} \langle X_j \rangle \subseteq \mathcal{G}_j$$

Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
 (i) $\{ \mathcal{G}_j \}_{j \in J}$ is a D3346: Sigma-algebra filtration for $\mathcal{F}$ on $P$ (ii) $\{ X_j \}_{j \in J}$ is a D1721: Random collection on $P$
Then $\{ (X_j, \mathcal{G}_j) \}_{j \in J}$ is an adapted random collection on $P$ if and only if $$\forall \, j \in J : X_j \in \mathcal{G}_j$$